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DEGENERATE PERIODIC MOTIONS IN THE CASE OF THE GENERATING SET 
OF QUASI-PERIODIC SOLUTIONS* 

P.S. GOL'DMAN and R.F. NAGAEV 

The problem of existence and stability in the small of periodic solutions of a 
system of ordinary differential equations with a small parameter bt, which in the 
generating approximation admits a stable in the large set of quasi-periodic SO~U- 

tions, is considered. Four groups of diverse character criteria of periodic solu- 
tion stability, which differ by the synchronization of not all generating rapid 
phases, are obtained. Dependence of the considered here solutions on remaining 
phases, called quasi-static, are completely absent. 

The particular nondegenerate case of synchronization of all rapid phases was considered 
previously in /l/, other particular aspects of the general problem considered here were in- 
vestigated in /2-5,'. The technique of derivation of periodic solution in the formofseries 
in powers of the small parameter was developed by Poincarg and others /2/. 

1. Structure of the problem generating system. In applications related to cele- 
stial mechanics and technology of interest is the problem of periodic solutions of the follow- 
ing almost conservative dynamic system: 

p’ = -aHlaq + ~0, q’ = aHlap, u’ = U 

H = H (9, PL Q = Q (s ~2 ~3 4, 14 
lJ = lJ (47 P2 % $7 L4 

(1.1) 

where p and q are, respectively, the row and column vectors of conjugate canonic variables, u 
is the vector of remaining coordinates of the system, and the generating Hamiltonian H and 
the vector functions Q and U are periodic with respect to the phase of external perturba- 
tions Q= vt and analytic with respect to remaining variables. It is assumed that in the 
generating approximation (p = 0)the isolated conservative subsystem admits a general quasi- 
periodic solution. The corresponding to it rapid phases will be conditionally separated in 
two groups $i = Oit + CZ;, i = i, . . ., 1; (1.2) 

cps = Sl,t + f13, s= 1, . . ., m 
with the first and second group phases linked by the action constants 11, . . ..Zl and K,...., 

Km. The phase space of the canonical generating subsystem is, thus, completely filled by 
tori with 1 + m + 1 at angle coordinates 

p = p (ql, . .,$I, I,, . . ., I,, ‘~1, . ., (P,,,, K,, . . ., K,, 01, . .j en, h,, . . .v L II) (1.3) 

q = q ($,, . . ., $1, I,, .1 I,, ‘PI, . ., (~rnvK1,. . .,K,,,,@,, . .,&,,hl,. .,h,,$) 

where el, ., 8,. h,, ,. k,, are the remaining conjugate constants of integration, so that 1 + 
m + nis the dimension of vector p (or q ). The first group partial frequencies ol, ., o1 
are real mutually independent functions of action variables, and 

wi = cYHlc31i (1.4) 

In terms of action variables the generating Hamiltonian is of the form H = H(Z,,...,Zl, 
K,. ., K,) r which shows that the matrix coefficient of slope 

cij = aoi/arj = a2Hlaz,a[j (1.5) 

is of rank 1. The second group partial frequencies Q,,. .,n,, are also mutually independent 
and satisfy the equalities 

a, = BHIBK, (1.6) 
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However among them there may appear isochronous phases (<?, -- consl) which will be assume!i 

highly incommensurable with the perturbation frequency Y. 

These frequencies are, moreover, such that the quantities 

Cc > %I,, -K,,,. 0 : (' ( 1 . .I' i 

are not small.Note,also, that the frequenciesthatare not isochronous for Kr ": ... z A., Y (1 

may prove to be equal. The isochronous phases in the general solution (1.3) may not belong to 
the second group. It is assumed that the generating system is such (or can be made such) that 

the frequencies corresponding to these phases are identically equal Y, and can consequently 
be related to the external phase $ which explicitly appears in (1.3). In such case the gener- 
ating Hamiltonian in formulas (1.4)- (1.6) is determined with an accuracy to the constant term 

VI, where I is the action constant conjugate of the isochronous resonance phase. Finally, 
note that the fulfillment of inequalities of the type of (1.7) is not necessary for frequenc- 

ies of the first group. 

In what follows we call phases of the first group, and their actions and phase shifts a,. 

.,a[, anisochronous, and the corresponding characteristics of the second group,quasi-static. 

One more important assumption relates to the form of dependence of the general solution 

(1.3) on quasi-static phases and actions. Let us assume that the variable quantities [I and Q 

are analytic functions of the quantities 

h, 2 r/KS Cos 'p*, ub = v-Ks sin 'pa (1.8) 

The last of vector equations (1.1) in the generating approximation is integrable after 

(1.3) has been obtained. We assume that equation makes possible the effective constructionof 

a quasi-periodic set of "purely ir,duced" solutions of the form 

a =- u (d,. .,$,I. I,. ., I,, ‘F,, ., ‘(,,,. K,. K,, o,.. .,O”,/?,, 

which is stable in-the-large. 

The latter is ensured, if for instance that equation is linear and 

all componentsof uwhen p -- 0. 

Below, somewhat extending the problem, we use as the input system 

t' = x (I, $, 11) 

which has all of the described properties and, consequently, admits for 

the-large set of quasi-periodic solutions 

(1.9) 

steady with respect to 

(1.10) 

11 -:- 0 the stable in- 

I -= .z crp, q,. .%$,.I,.. ../,.A,. . in,. ~1.. .,p,n>lr,, ., h,) (1.11) 

where, for simplicity, all constants that do not belong to anisochronous and quasi-periodic 

coordinates and denoted by h,. ..,h,. 
The generating T-periodic solution has t-he property that anisochronous partial frequenc- 

ies coincide with the perturbation frequency and the quasi-static actions vanish 

K, = 0. C!), (I;. . I;. (I. . . 0) - \ (1.12) 

Owing to the nondegeneracy of the steepness matrix (1.5), the relations (1.12) uniquely 

determine the anisochronous actions. Such T-periodic subset from (1.11) dependson constants 

(L,. ., aI. h,, . . , h,. 

2. The criterion of existence and stability. The system of equations in varia- 

tions of system (1.10) 

y -- ydX:& i?.i) 

close to the unknown 7'-periodic solution admits for }I -2 (I, 14 II mutually independent solu- 

tions 

(&.'aa,), 1 - 1. .( I; (az;ah,),y 1, . n (2.2) 

that are of the same order /l/, and 1 increasing solutions of the f0x-m 

(dzlda,) / ; 0, 
(2.3) 

I?( :- (P‘J’ (iwd1,) (2.4) 

where (e,,)-' is a matrix inverse of (1.51, and the parentheses indicate here and in what fol- 

lows that the respective quantity is calculated using the T-periodic generating solution. 



Degenerate periodic motions 433 

Moreover, summation over recurring indices i, j,k from 1 to 1, over index r from 1 to m, and 

over index 6 from 1 to n is implied in (2.4). 
System (2.1) also admits when y = 0 m pairs of complex conjugate mutually independent 

quasi-periodic partial solutions of the form 

(2.5) 

If x quasi-static frequencies Q,, . .., Qr with K, = . ..= K, become equal to a given value 
(8), then the respective x partial quasi-periodic solutions of type (2.5) have the same fre- 

quency spectrum. Nevertheless, when K, = 0, the respective partial solutions are mutually 
independent by virtue of the mutual independence of these frequencies. Thus when p=O,the 
characteristic equation of system (2.1) has an n-multiple zero root with simple elementary 
divisors, (Z)- multiple zero root with quadratic simple divisors, and m pairs of pure imagin- 

ary indices of the form -J-f/-1 (a,). Appearance of the latter is associated with the pres- 
ence of quasi-static phases , and predetermines the essential difference of the considered de- 
generate problem from that of synchronization on all phases /l/. 

Note also that all remaining characteristic indices of the solution, by virtue of stabil- 
ity of set (1.111, have negative real parts that are not small. 

We introduce in the analysis the column vector z that satisfies the system 

z' = -z (ax/&) (2.6) 

conjugate of (2.1) when P =O. We impose on themutually independent T-periodic solutions til, 
. . .,v, and wi,. . .,w, of (2.6) the following normalizing conditions 

vb (axlab) = &#a; Wj+i = 6ij (2.7) 

The independent quasi-periodic partial solutions of (2.6) 

(2.8) 

satisfy the following normalizing relations: 

Pr Vz&) + 0; ~~z/~~~) = s,, 
(I, @r/an,) - Pr (~~/~~*) = 0 

(2.9) 

For the existence of T-periodic solution of (1.10) of the considered here type, which 
is analytic in P in proximity of point u = 0 it is sufficient that the system of l+ n trans- 
cendental equations 

T 

P6(ah...,a,,hl,.. , h,) = 1 va (ax/&l) tit = 0 (2.10) 
0 
T 

Rj (a,, . . . , al, hl, . . , h,) G S Wj (8X/&) dt = 0 
0 

admits simple real solutions /2/. 
Investigation of conditions of asymptotic stability in-the-small is based on the deriva- 

tion of partial solutions of the form 

Y = n K IL) e*P IA(p) 11 (2.11) 

of the system of equations in variations (2.1), 
a column vector with T -periodic components. 

where h is the characteristic index and I) is 
The derivation of solutions (2.11) which for 

P = 0 are transformed into (2.2) is similar to that carried out in /l/. It is shown in ex- 
actly the same way that there are JZ -indices (h = hlP +h,P*f . ..) analytic in P for which the 
first approximation kl is determined from the conditions of nontriviality of solutions of the 
inhomogeneous system 

(2.12) 

There exist, moreover, 1 pairs Of indices (A = 5 P',:il -I- php + ~'.'a...) 
which the relations 

analytic in fi for 

(2.13) 
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provide means for determining the first two approximations. The quantity 
periodic solution of the first approximation equation 

11 . = (dX:dz) I, -1 (axlap) 

and a,' is the solution of the system conjugate of (2.131 

aj’3Rjidai = ,l,‘Tai* 

which satisfies the normalization condition n,a,* = 1. 

! 1: . 1 .; : 

21 1s the 7‘ . 

(2.15) 

(2.16) 

Essentially new stability criteria related to the presence of quasi-static phases exist 

and correspond to partial solutions (2.11) of system (2.1), which for p = 0 transform into 

(2.8) - If for K, h',,, L- 0 x quasi-static frequencies are equal (Q). there exist quasi- 
periodic solutions that are analytic in paand defined by the expansions 

n = a firi+) 

cf 

- ~~(az/f+lt)l i unl -+ tl'? . . . (2.ljr 
,i.= -1 (!I) ! p& i- p2. 

where ac(t = I,.... x) are some scalar constants, the vector functions (kii%.t), (&j&) corres- 

pond to the quasi-static phase of the considered here "multiple" group with number 5, and 

the successive approximations rh,~]~.... are T-periodic in 1. Here and subsequently summa- 

tion from 1 to x is implied by the recurrent indices 5 and <. 

The substitution of series (2.17) into (2.2) yields the following first approximation 

equation: 

where the prime denotes total partial differentiation with respect to p. 

Expression for the first correction to the characteristic index h, can be obtained from 

the condition of existence of a T-periodic solution of system (2.181 in the process of in- 

vestigation of the homogeneous system 

(2.19: 

For the asymptotic stability in-the-small of this T-periodic solutions it is, thus, suf- 

ficient that the following three groups of conditions are satisfied. 

1'. The anisochronous stability conditions which decompose lnt0 two SubgrOUpSandspecifY 

that the corrections h, and h, determined in conformity with (2.13) must satisfy conditions 

that h,' < 0, h, c 0. 

2'. The isochronous stability conditions which imply the negativeness Of real roots of 

the determinant of system (2.12). 

3'. The quasi-static stability conditions which in conformity with (2.19) are charater- 

ized by the fulfillment of inequalities He 1, < 0. 

3. The case of the almost conservative system. The use of the obtainedconditions 

ofexistenceand stability in the most general form is somewhat complicated by the presence in 

them of periodic solutions of the conjugate system (2.6) which satisfy the completely defined 

normalization relations. For the almost conservative system (1.1) the system of equations in 

variations (2.1) is self-conjugate when p = 0. Owing to this, there exists correspondence 

between solutions of the system, which enables us to express the resulting conditionsin terms 

of explicit functionals calculated with the use of the generating T-periodic solution. 

With this in view we pass in the almost conservative input system (1.1) frcmthevariables 
(p, q) to the new canonical variables ($)t.I,, I,, li.,eV,hY) in conformity with (l.jl- (1.81. As 

the result WE obtain 
I,' L pQapI&h, qi’ = O, - ~QaqkVi,(i = I, , ., 1) 

Pa = Q&, - pQW%. L’ = --51.p, + pQ&dap8, (s :z 1, ., m) 
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The stable in-the-large set of quasi-periodic solutions of the generating System iS 

Ii = const, qi = oit + ai, h, = (KS cos cp,, IL, = v/K,sin cpJ, K, = const, ma = QJ i- fi, 

k, = const,0, = const, LL = u(Ii,qi: h,, pL,,hyr t3,) 

By virtue of this we have1 +2n periodic solutions of the system of equations in varia- 

tions when P = 0 
iii< = 0,611, = isij, a, = 0, sp. = 0,6h, = 0, 68, = 0, SU = (c3CLickZj) (j = 1, ., 1) 

61, = 0, s$j = 0, Sh, = 0, sp, = 0, sh, = s,a* 69, = 0, Su = (dulahb) (6 = 1, . . ., n) 

61, = 0, sqi = 0, Sh, = 0, sp, = 0, 6h, = 0, SO, = fi,*, Su = (&d&36) (6 = 1, . . ., n) 

We denote the components of vector 9.j (see (2.4)) in this conservative problem by a 

prime 
li'=(eij)-', qi'=o, ~s'=I"*'=o) hyl=ey'=o, U' = (f?j,)-1(f3U/aI,) 

We denote variables on conjugate system (2.6) by an asterisk. As in the canonical case, 

that system becomes a system of equations in variations, after the inversion 

61 i-4%** 6$i+-li*, 6h,+h,*, 6p,-tp,*, *6hy_thy*, , 68,+‘,* 

and addition to the right-hand sides of these equations terms that are linear homogeneous 

forms of components of vector u*. 

As regards the last vector equation, it is of the form u** = -u* (LW/&L). 

It follows from the above that the periodic solutions of the conjugate system normalized 

in ccnformity with conditions (2.7) are of the form 

I**=(~~~), q,*=o, h,*=pr*=O, hy*=ey*=o, u*=o, (j= 1,. . .) 1) 

I~*=$~*=& h,*=pr*=O, h,*=8y6, e,*=O, u*=O, (8=1,...,n) 

Ii*=g**=o, l,*=pL,*=o, h,*=o, ev*=ay*, u*=o, (6 = 1,. . . , n) 

Equations (2.10) for the determination ofrparameters of the generating solution are 
T 

A, = s (Qaq/X&) dt = 0, B, s - j (Qi3q/Cjh,) dt = 0, (y = 1,. . , n) 
(3.1) 

II T 0 

Ri s (eij) 1 (Qaq/aaj) dt = 0 (i = 1, . a , 1) 

By virtue of the nondegeneracy of" matrix (eij), the last 1 equations (3.1) are equivalent 

to the following simpler ones: 

T 

Ci c S (Qaq/aai) dt = 0 
0 

The system of equations for the determination isochronous stability criteria (2.12) in 

the considered here almost conservative case reduces to the form 

a$Aal&i + aAJahyby f ~,,i?A~ir%~ = &Tea 
a$Balaai + b,aB~iah, + c,aB,Jae, = h,Tba 

(3.2) 

aiaCjlaai + bvaCjlah, + c,X,l83, = 0 

The anisochronous stability criteria for the first subgroup are determined in conformity 

with (2.13) by the system 

(ejk) aiaCklaai = hlaTaj 
(3.3) 

The system conjugate of (3.3) can be reduced to the form 

(ei,) bkXklaai = h12Tbi 

in which appears the new variable that satisfies the "weighted" normalization condition 

ai (et,)-‘bj = 1, ai* = (ei,)-‘bj (3.4) 

The determination of anisochronous criteria of the second subgroup requires the expansion 
of the expression for matrix Pji (2.14). Omitting intermediate calculations, we present the 
final formula 

T 

pji = aDjlaai, Dj = ( (QaqkUj) dt 
‘0 (3.5) 

By virtue of (3.4) and (3.5) we thus have 
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The components of vectors Pa and es appearing in quasi-periodic solutions of the con- 
jugate system of type (2.8) that satisfy normalization conditions of type (2.9) are denoted 
below by parantheses with asterisks, respectively, above and below 

(ri)*=(qi)+= 0, (A,)* = -$6',, (p.)*=o, (h,)* =(e,)* =o, (u)‘= 0 

(Ii)* = (*pi)* = Or (hs)* = Ot (Ps)* = + 68T* (&)* = (e,)* = ‘9 (u)+ = O 
In consequence of the above Eqs.(2.19) that define the quasi-static stability criteria 

which correspond to the X-multiple generating value of (a) assume the form 

Fulfillment of the quasi-static stability conditions in the linear problem of weak non- 
resonant interaction of identical linear oscillators 

Q, " i Q'q, = )I (b,q,’ + a,,q, -!- h, sin of) (3.6) 

where the numbers Q and o are mutually incommensurable and the matrix components b,, and aa, 
are constant, reduces to the fulfillment of inequalities A,< 0 in which h, is determined in 
the course of investigation of the homogeneous system of linear equations 

Thus in the considered here nonresonance case only quasi-static criteria are important, 
since they are intrinsically independent of phase difference D - 0 = O(l), andensure stabil- 
ity of the zero solution of the homogeneous part of (3.6). 
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